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The author examines two conjugate problems of heat transfer in the 
taminar boundary Iayer at the boundary of a semi-infinite porous 
medium on the assumption that fluid filters continuously through the 
porous surface and that the injection velocity varies as x-I/z, where 
x is the distance in the direction of flow. 

The p rob lem of heat t r a n s f e r  in a boundary  l ayer  
with in jec t ion  cons is t s  in  solving the o rd ina ry  bound-  
a ry  l aye r  equat ions  with boundary  condi t ions  imposed 
on the t r a n s v e r s e  ve loc i ty  component  at the su r face ,  
the diffusion equat ion for  the in jec ted  gas, and the 
modif ied ene rgy  equation. This p rob lem has been 
examined  by va r ious  authors  [1-3].  Cer ta in  n u m e r i c a l  
solut ions were obtained by Ecker t  et al. [4]. Ecke r t  
and Drake [5] inves t iga ted  the p rob lem for  an in jec t ion  
veloci ty  va ry ing  in i n v e r s e  p ropor t ion  to the square  
root  of the d i s tance  f rom the leading edge for P r  = Sc = 
= i and P r  = Sc = 0.7; where Pr  and Sc are  the Prand t l  
and Schmidt n u m b e r s ,  r e spec t ive ly .  

However,  all these authors  inves t iga ted  the p r o b -  
lem for  a given t e m p e r a t u r e  along the sur face ,  com-  
ple te ly  neglec t ing  the heat conduction of the porous  
body. The i r  solut ions  do not depend on the t h e r m o -  
physica l  c h a r a c t e r i s t i c s  of the porous  surface .  In this 
paper ,  we examine  two conjugate p rob l ems  of heat 
t r a n s f e r  in a l a m i n a r  boundary  l aye r  with in jec t ion  of 
the same type as that cons ide red  by Ecker t  and Drake 
[5], taking into account the t he rma l  conduct ivi ty  of the 
porous  med ium at whose sur face  the boundary  l aye r  
exis t s .  Thus,  the solut ions depend on the t he rm ophys -  
ical  c h a r a c t e r i s t i c s  of the porous  medium.  Conjugate 
h e a t - t r a n s f e r  p rob lems  were f i r s t  examined by 
P e r e l ' m a n  [6, 7], who solved the boundary  l aye r  equa-  
t ions  together  with the equat ions of heat  conduction in 
the solid on the a s sumpt ion  of cont inui ty  of the t e m p e r -  
a ture  and heat flux at the surface .  

The f i r s t  p rob lem cons idered  in this  paper  is  con-  
ce rned  with the boundary  l aye r  at the boundary  of a 
s e m i - i n f i n i t e  porous  medium,  0 < x < ~o, - ~  < y < 0. 
It i s  a s s u m e d  that  the in jec ted  fluid cont inuously  f i l -  
t e r s  through the su r face  of the porous  body and is 
i n s t an taneous ly  evapora ted  at the surface ,  absorb ing  
the heat of evapora t ion  and thus cooling the sys tem.  
Heat conduction in the d i rec t ion  of the m a i n  s t r e a m  is 
neglected,  but  convect ive heat t r a n s f e r  in the porous  
body due to the mot ion  of the fluid is taken into account.  
This  co r r e sponds  to the case when the in jec t ion ve loc -  
ity is not ve ry  sma l l  in compar i son  with the ma in  
s t r e a m  veloci ty .  

In the second p rob lem,  we neglec t  convect ive heat  
t r a n s p o r t  in the porous  body, but take heat  conduction 

in the longi tudinal  d i rec t ion  into account.  
Whereas  the f i r s t  p rob lem reduces  to the solut ion 

of a s ingular  in tegra l  equation for  the t e m p e r a t u r e  at 
the sur face  for which it  is  poss ib le  to obtain an exact  
solut ion,  the second r educes  to the joint  solut ion of 
two s ingu la r  in tegra l  equat ions,  for  which asymptot ic  
solut ions  at l a rge  va lues  of the d i s tance  in the d i r e c -  
t ion of flow a re  obtained by the method proposed in [8]. 

P r o b l e m  1o The equat ions  desc r ib ing  the p rob lem 
are  as follows (see figure):  

for  the veloci ty  field 
au au a~u 

u - -  + v -= v - -  (1) 
Ox Og Of  ' 

au av 
a - / -  + ~ = 0, (2) 

u]~=0 = 0,  ( 3 )  

vr~=~ = - -  x - v0 (x) ,  ( 4 )  

uly~ = U~, (5) 

where C is  found f rom (4) as 

/ U ~ , l  
C = Cq -~ , 

Cq -- - q  " 
lbU~, ' 

for  the t e m p e r a t u r e  field: f lu id- -  

O0 O0 v 020 
u Oy + v a y  a Oy ~' O < x < o o ,  

( 6 )  

(7) 

O < g < ~ ,  (8) 

porous body 

Boundary  l a ye r  on a porous  body 
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porous body-- 

02T Vo (x) aT Q (x, v) 
Oy ~ as Oy k s 

--00 < y < 0 .  

O < x <  o0, 

(9) 

To be specific, we assume that 

~ h ~ y ~ O~ Q(x, y ) =  ~..,x,, 
[ O, - - o o < y < - - h .  

The boundary conditions are 

0 = T =O(x), y = 0 ;  

k O0 aT 
f--~ = ks Oy 2C Pt V vU| y 

0 = 0 ,  x = 0 ;  

0 = 0 ,  y-+ oo; 

(lO) 

(11) 

= O; (12) 

(13) 

(14) 

arav ~ . -~  = o. (15) 

The solution of Eqs. (1) and (2) with the boundary 
conditions (3), (4), and (5) was obtained by Schlichting 
and Bussmank [9] for  various values of C. Using the 
t ransformation 

1 V U| q = - ~ - y  (16) 
~X 

we reduce Eqs. (i) and (2) to the form 

If' + f" = 0 (17) 

with the boundary conditions 

y = o ,  f = c ,  n = o ,  (18) 

f'-,-2, n---,-r (!9) 

Thus, the surface friction is given by the formula 

() V-' au = ixu| ~-  -~ f~(o) = 

V U ~  = i x U~. - ~  K ( C ) .  (20) 

The value of (1/4)f"(0) = K(C)canbe obtained from [9], 
in which tables were compiled for the dependence of 
f " (0)  on various values of C and K(0) = 0.332 for  the 
Blasius boundary layer .  

The solution of Eq. (8) with the boundary conditions 
(13) and (14) and the surface friction (20) can be ob- 
tained by the Lighthill method [10]. Thus, the relat ion 
between | and the flow at the surface p(x) is de te r -  
mined from Eqs. (11) and (12). Therefore ,  

p(x)=--K(C"), kt ~'/~( ~P~------~ )'/~ • 

x 

,'4F O'(x,)dx, 1 
x 

0 

(21) 
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The solution of Eq. (9) with the boundary conditions 
(15) is as follows: 

Y g 

L as J k. 
- - m  O 

Y 

ks \ % I 

where 

C /-~ U,. I (23) p0) (x) = p (x) + -~- Or l / ~  , 

and, thus, f rom condition (11) we obtainthe expression 

0 g 

O ( x ) = - - S  exp L[vo(x)Y 1[~ 'Q(x'y') _I k~ 

0 

-1 pO' (x) ~ exp I v~ I ~,  ( ~  
k. L as J 

- - co  

which, together with (10), leads to 

o (x) - - 2 a , / T  Ck, ~V-ff-O-~ {hQ(x)+p(x)}--{-~s ~_t}. (25) 

Eliminating p(x) f rom (25) and (21), we arr ive  at 
the following singular integral equation for | 

x 

R~,/, [' o'(xl)dxl 2~.V~-hQ(~) (26) 
O(x) (~ - 1 )  + ~_ j (x~/,-~/,)~z = ck, VUg2 ' 

0 

where 

p=2K(C)a'w-~/3 " 
CZ ' (27) 

z = k j G ;  (28) 

a'=aJap (29) 

Case 1. Constant source 

=/Qo, x<L,  
q(x) {0, x>L.  (30) 

Equation (26) can be represented  in the following 
form: 

x 

.1/4(' O'(xh dxl H1/Z_t - Ip~ (31) O(x) + y~ ~(x3-Tzzu - -  , 
,j', -1 p Cs Ps 
0 , 

where 

P r = ; (32) p--1 

= [  2(~,hQo , 
n  cgV:-5-: x<c ,  

[ O, x > L .  (33) 



Taking the Mellin t r a n s f o r m  of Eq. (31) 

O (S) = ~ 0 (x) x s - '  dx, 
0 

(34) 

we obtain 

o(s)/l+ 3 _ + 

V ( 2  4 S )  s + l  r ~ - T  2 
+ ( I~ (S), (35) 

\ cs Ps ] 

where ,  so that  we can apply the Mell in t r a n s f o r m a t i o n ,  
the second t e r m  on the r igh t -hand  side of Eq. (31) has 
been r e p r e s e n t e d  in the f o r m  [7] 

( c ~  P-~-~ ) =  e- '* ( c~ 7 , ~ o  --~-, 1 ' 9 '  ] (36) 

and, thus,  

O (S) = LS+i/2 P 3 3 

•  2 - - 4 S 3  3 ) +  

l-:/ )tl 4 S  q_ +~r r 1 - - 2  

( I P ' l e - s r ( s ) r ( 2 ~ - -  4-~-S ) 
+ \csps/ 3 3 ~-o (37). 

( ) )} { r 2 - - 4 s  + y p  F 1 - - 4 S  
3 3 3 

The i n v e r s e  Mellin t r a n s f o r m a t i o n  can now be c a r r i e d  
out without difficulty,  s ince,  in the second t e r m ,  the 
contr ibut ion of all  the s ingula r i t i es  van i shes  as e ~ 0, 
a p a r t  f r o m  the case  S = 0. Thus,  

l Hx1 /2  + (  Ipf ] /6(0), 

e (x) = { 

] ( ' P '  ] /(5(o),  x>L,  
t \ csPs ! 

O < x % L ,  

(38) 

where  

(39) 

and 

(5 ( 0 )=  1 --I- V. (40) 

Thus,  the t e m p e r a t u r e  v a r i e s  as x 1/2 in the p r e s -  
ence of cons tant  sou rces  in the porous  med ium,  while, 
in the absence  of sou rce s ,  a constant  t e m p e r a t u r e  is  
main ta ined .  

S imi la r ly ,  

p (x) = - -  

(' ] Hx'<' -C, ~ v 
1 + ,  • 

Cpsc~ 1 / v U -  
x 2 V x hQo ~ 0 < x < L ,  or 

p ( x ) -  Y [I ptvo(x)l , x > L .  (41) 
l + y  

Thus,  for  x > L the h e a t - t r a n s f e r  coeff ic ient  

a*= P(x) " ~ C c s p ~ r  (42) 
O(x) 2 ([3-1) 

and the local  Nusse l t  number  

Cc p~ V-~UTx~x, (43) Nu, -- 2 (~--1) 

where  fl is  de t e rmined  f r o m  Eq. (27). 
Case 2. Q(x) = Vl~Q0/qx. Proceed ing  as in case  1, 

we obtain 

H'  
0 (x) - - -  - const (44) 

(5 (o) 

and 

H' , IPt ICks 1 / 7 U 7  h3/~Q~ (45) 

where  

2as ha/~ Qo ( I pf ) 
H' Ck~ ] /vU.  + \ c~ 9~ �9 " (46) 

Thus,  in this case ,  

Ior6(0) l CkslfvU" ha/2Q~ (47) 
Ct* 1 + 

t-/'c,~, j ~ ~ x H' V 7  
and 

IOn6 (0) I CZ h3/2Q~ (O)vrx (48) 
Nu x = { 1 -}- ~ j  ~ l/~v--U~ x H,kt 

P r o b l e m  2. We now cons ider  the analogous p r o b -  
lem in which we neglec t  convect ive  heat  t r a n s p o r t  in 
the porous  body and take the longitudinal heat  conduc-  
t ion into account.  Thus,  we m u s t  solve the s y s t e m  of 
equat ions (1)-(15),  r ep l ac ing  Eq. (9) with the equation 

02T F O~T = 0 (49) 
Ox 2 Oy 3 

with the addit ional boundary  condit ions 

T----0, x=O, (50)  

07" = O. (51) 
Ox x~o. 

The solut ion of Eq. {49), sa t i s fy ing condit ions (15), 
(50), and (51), has  the f o r m  [7] 

.f + '  
1 .o (x+x')~--9-'P(b(x') dx'. (52) 

T (x, g) = ~-n In (x - -  x') ~ + f 
0 

Thus,  f r o m  (11) and (12) we obtain 

x+j  O(x)= lio '~ ~ ;(, (y) dy, (53) 
where  

= . p ( x ) +  v (54) 
p") (x) = Oyy=o v ' x  ' 
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and p(x) i s  d e t e r m i n e d  f rom (11) and (12) and 

v, = c ~:I ~/~u~. (55) 
2 k~ 

Func t ion  p(x) i s  aga in  d e t e r m i n e d  in t e r m s  of | 
u s ing  Eq. (21). Thus,  the so lu t ion  of the p r o b l e m  r e -  
duces  to the  jo in t  solut ion of two s ingu la r  i n t eg ra l  
equat ions ,  (53) and (21), with account  for  (54). 

Taking the Mel l in  t r a n s f o r m  of ~unctions (53), (54), 
and (21), we obta in  

O(s)--P(I)(S+I)tg( ~ ) S ~-S , - - I < R e S < I ,  (56) 

s- ~-- ( ~  ) (") 
l p ( s ) + v , ~  2r  --S 

and 

[ 4 

O<ReS<I/4, (58) ,  

where ,  to obta in  the Mel l in  t r a n s f o r m ,  the second  
t e r m  on the r i g h t - h a n d  s ide  of (54) was wr i t t en  in the 
f o r m  

y' y'  
= e-~/x . -  (59) 

Vx ~-o Vx 

and fl' in (58) i s  e x p r e s s e d  as  

fs = K (C) ktol/3 { P' U~ )'/2 . (60) 

Equat ion (56) can be  wr i t t en  as  fol lows:  

O ( S - - l ) =  P(')(S),Ig ~-~- (S --1), 0 < R e S < 2 .  (61) 
S - - I  2 

El imina t ing  p(1)(S) and p(S) f rom Eqs .  (57) ,  (58 ) ,  and 
(61), we obtain the fol lowing d i f f e r ence  equat ion in the 
Mel l in  t r a n s f o r m  of the function | 

O ( S _  D = ~' O ( S - -  l/2)x 
k 8 S - -  1 

[ ] 4 " • 

• t g - ~ -  ~ ( S - -  1) + y'~oeS-i/2 x 

(62) S--I 

We now find the a sympto t i c  so lu t ion  of th is  equat ion 
fo r  l a r g e  x. In (62) we r e p l a c e  tg ( r /2)(S - 1) in the f i r s t  
t e r m  on the r i g h t - h a n d  s ide  by  the equiva len t  e x p r e s -  
s ion us ing  r fauc t ions .  

Thus, 

o ( s - l )  

x 1 +  

o ( s - - 1 / 2 )  x 
k~ S - - I  

4 S )  • 

F(I--S/2)F(S/2) __ y, es_~/2 p x 

2 ) r 8-0 

0 < Re S ~ 1/4, (63) 

It should be noted that  the f i r s t  t e r m  on the r i g h t -  
hand s ide  of Eq. (63) was obta ined  for  0 < ReS  < 1/4;  
the second  t e r m  is  va l id  fo r  the r e g i o n  0 < Re S < 2. 
However ,  if a s  in [8], we se t  

O(3S--1)=P~(S)~(S),  ReS > O, (64) 

whe re  

fl(S)----- F(2, S) F S + ~ -  x 

x r (  s +-}) r (s+l)r(~s + 

5 3 S , 

Re S > 0; (65) 

an (66) , (x)"-" x,,,,',+8 ' 

we can e a s i l y  show tha t  the i n v e r s e  Mel l in  t r a n s f o r m a -  
t ion fo r  ~(S) ex i s t s  for  a l l  x, including x --- 0% and f~(S) 
does  not have s i n g u l a r i t i e s  in the ha l f -p l ane  Re S > 0. 

Subst i tu t ing  (64) into (63), we note that ,  for  the s e c -  
ond t e r m  on the r i g h t - h a n d  s ide  of the equation,  the 
con t r ibu t ion  of al l  the o the r  po les  - - 0  as  e - -  0, and 
only the pole  S = 1 /2  g ives  - 2 y .  Assumpt ion  (66) r e l a -  
t ive  to r l e a d s  to va lues  of the coef f i c ien t s  6 = 1, 
a = 1/2,  and we obta in  

2n 4 \ 
3 a 

O(x) = ~ 7 ~  x,.,/% (67) 
n=0 

and from (58) 

0 ( ~ )  = - ~- I~' ~ ::+,/~ , ( 6 s )  

where 

G(s)=IG(S) I + r ( 2 - - s )  , (69) 
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and 

The coef f i c ien t s  a n, n > 0 a r e  d e t e r m i n e d  by m e a n s  of 
the r e c u r r e n c e  r e l a t i o n s  

F r o m  (60) 

and 

and 

a~=O,  n < O  (71) 

2 k s 7'  1 
a~ ~' Kx (2/3) (72) 

a o ~ _ K (C) \--U--~ ] K~ (2/3) (73) 

aj = 2 X!~".. (~-2/3 x 
/<~ (C) 

X 'v 
, 

K ~(c )  ~ u~ ] 

Thus,  

• 

3 x ,  J2 , ,  x ~-~/3 ( 4 )  
O(x) = - - ~ -  K (C) K~ (-~ ) 

X2 (Re~,)-' ~ ( 4 )  ~(2) 
{~-- 2/3 ~_ 

~ 3  

. . ] _ _ _  ~-1 x 
K ~ (c) 

X - -  ' . . . (74) 

and 

,,,,, + 

,X, 2 
+ .... ~-2/3 (Rex)-3/2 x 

g ~ (c) 

a-, /a (Rex)-,/2 x 

x ' ' - -  . . . .  (75) 

Thus,  s ince  ~2(2) = 0 f r o m  Eq. (65), i t  fo l lows f r o m  
(71) that  a l l  the a n with n > 2 van i sh  and 

O ( x )  = - -  3 _  xt/2 V' ~ ~-,/a (Rex)-t/Zx 
2 - K ( C )  

o(+) 
x -- const, (76) 

while  

_ _  ~-1/3 (i~ex)-u2 . 

Consequent ly ,  

(77) 

I<I a * -  &Z(~-, /a  r ~' . ( 4 )  

f f - - I / 3  i --K(C)-- (Rex) 2 K , Z ~ y  ' (78) 

Thus,  fo r  l a r g e  v a l u e s  of x, the t e m p e r a t u r e  b e c o m e s  
cons tan t  and the hea t  flux v a r i e s  as  x-X/2; the a s y m p -  
t o t i c  so lu t ion  g ives  a r e s u l t  qua l i t a t i ve ly  s i m i l a r  to the  
r e s u l t  ob ta ined  f rom p r o b l e m  1 in the absence  of s o u r c e s  
in the body.  Th is  is  b e c a u s e ,  at  l a r g e  d i s t a n c e s ,  i t  i s  
p o s s i b l e  to ne g l e c t  the conduc t iv i ty  of the body in the 
d i r e c t i o n  of flow. The cons tancy  of the t e m p e r a t u r e  as  
the  in jec t ion  v e l o c i t y  v a r i e s  a long the p la te  a c c o r d i n g  
to the law x - l / 2  has  been  noted b e f o r e ,  for  e x a m p l e ,  in 
[5], whe re  i t  was concluded that  the a s s u m p t i o n  of such 
a law of v a r i a t i o n  of i n j ec t i on  v e l o c i t y  i s  equ iva len t  to 
the a s s u m p t i o n  that  the  s u r f a c e  i s  a t  cons tan t  t e m p e r a -  
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ture  and, hence, that the assumption of constant t em-  
pe ra tu re  and var ia t ion  of injection veloci ty  according 
to the law x- l /2  was just i f ied for the solution of the 
nonconjugate problem.  

NOTATION 

u is the fluid veloci ty  in the x-direct ion;  v is  the 
fluid veloci ty in the y-di rec t ion;  v0(x) is the injection 
veloci ty  at the sur face  of the porous body; v is t hek in -  

ematic coefficient of viscosity; q is the mass of fluid 
filtering through a small area of porous surface of 
length I and width b per unit time; ~ is the dynamic 
coefficient of viscosity; 0 is the fluid temperature; T 
is the temperature of the porous body; k is the thermal 

conductivity; p is the density; c is the specif ic  heat; 
ce = k /pc  is the thermal  diffusivity; I is the specif ic  
heat of evaporation.  Subscripts:  s r e l a t e s  to the porous 
body, f to the fluid. 
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