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The author examines two conjugate problems of heat transfer in the
laminar boundary layer at the boundary of a semi-infinite porous
medium on the assumption that fluid filters continuously through the
porous surface and that the injection velocity varies as x~1/2, where
x is the distance in the direction of flow,

The problem of heat transfer in a boundary layer
with injection consists in solving the ordinary bound-
ary layer equations with boundary conditions imposed
on the transverse velocity component at the surface,
the diffusion equation for the injected gas, and the
modified energy equation. This problem has been
examined by various authors [1-3]. Certain numerical
solutions were obtained by Eckert et al. [4]. Eckert
and Drake [5] investigated the problem for an injection
velocity varying in inverse proportion to the square
root of the distance from the leading edge for Pr = Sc=
=1 and Pr = Sc = 0.7; where Pr and Sc are the Prandtl
and Schmidt numbers, respectively.

However, all these authors investigated the prob-
lem for a given temperature along the surface, com-
pletely neglecting the heat conduction of the porous
body. Their solutions do not depend on the thermo-
physical characteristics of the porous surface. In this
paper, we examine two conjugate problems of heat
transfer in a laminar boundary layer with injection of
the same type as that considered by Eckert and Drake
[6], taking into account the thermal conductivity of the
porous medium at whose surface the boundary layer
exists. Thus, the solutions depend on the thermophys—
ical characteristics of the porous medium. Conjugate
heat-transfer problems were first examined by
Perel'man [6, 7], who solved the boundary layer equa-
tions together with the equations of heat conduction in
the solid on the assumption of continuity of the temper-
ature and heat {lux at the surface,

The first problem considered in this paper is con-
cerned with the boundary layer at the boundary of a
semi-infinite porous medium, 0 <X < ©, —w <y < 0.
It is assumed that the injected fluid continuously fil-
ters through the surface of the porous body and is
instantaneously evaporated at the surface, absorbing
the heat of evaporation and thus cooling the system.
Heat conduection in the direction of the main stream is
neglected, but convective heat transfer in the porous
body due to the motion of the fluid is taken into account.
This corresponds to the case when the injection veloc-
ity is not very small in comparison with the main
stream velocity.

In the second problem, we neglect convective heat
transport in the porous body, but take heat conduction
in the longitudinal direction into account.

Whereas the first problem reduces to the solution
of a singular integral equation for the temperature at
the surface for which it is possible to obtain an exact
solution, the second reduces to the joint solution of
two singular integral equations, for which asymptotic
solutions at large values of the distance in the direc-
tion of flow are obtained by the method proposed in [8].

Problem 1. The equations describing the problem
are as follows (see figure):

for the velocity field
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porous body—
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To be specific, we assume that
Qx), —h<y<O, (10)
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The solution of Eqs. (1) and (2) with the boundary
conditions (3), (4), and (5) was obtained by Schlichting
and Bussmank [9] for various values of C. Using the
transformation

1 Ua
=5y o (16)
we reduce Egs. (1) and (2) to the form
ffll+fll/= 0 (17)
with the boundary conditions
f,=01 f=C9 7]=0’ (18)
-2, n—>o00. (19)

Thus, the surface friction is given by the formula
au U. 1
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=pUa 1/ K©). (20)

The value of (1/4) f"(0) = K(C) canbe obtained from [9],
in which tables were compiled for the dependence of
f™(0) on various values of C and K(0) = 0.332 for the
Blasius boundary layer.

The solution of Eq. (8) with the boundary conditions
(13) and (14) and the surface friction (20) can be ob-
tained by the Lighthill method [10]. Thus, the relation
between ©(x) and the flow at the surface p(x) is deter-
mined from Egs. (11) and (12). Therefore,

px) =—K (C)__ki Y (M )1/2 X
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0
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The solution of Eq. (9) with the boundary conditions
(15) is as follows:

T(x, o) = —jy exp [ % (9 y ] [Smx,y)

=00
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p () [ w(y
+ T_j exp (—i——) dy, (22)
where
PO (x) = (23)

and, thus, from condition (11) we obtainthe expression
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which, together with (10), leads to
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Eliminating p(x) from (25) and (21), we arrive at
the following singular integral equation for ®(x):

[ Upfx) y ] dy, (24)
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where
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p= ox ; (27)
v = kJkg (28)
o = ada;. (29)
Case 1. Constant source
— Q07 XL L1
Q(x)*{o, x> L. (30)

Equation (26) can be represented in the following
form:

X
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o .
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Taking the Mellin transform of Eq. (31)

8(S) = [ 8@ rs—1dx, (34)
0
we obtain
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where, so that we can apply the Mellin transformation,
the second term on the right-hand side of Eq. (31) has
been represented in the form [7]

(_[_ ﬂ) S (L ﬁ\), (36)
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and, thus,
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The inverse Mellin transformation can now be carried
out without difficulty, since, in the second term, the

contribution of all the singularities vanishes as ¢ — 0,
apart from the case S = 0. Thus,
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where 2\ \?

and 3

8(0)=1-+y. (40)

Thus, the temperature varies as xi/ 2 in the pres-
ence of constant sources in the porous medium, while,
in the absence of sources, a constant temperature is
maintained.

Similarly,
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x% l/ Yo _hq,, 0<x<L,or

p(X) = — —Y— [ p; 15 (¥)], x>L. (41)
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Thus, for x > L the heat-transfer coefficient

px P ‘/ vU
®__ — —_= 42
= g = I@=0) °% P X (42)
and the local Nusselt number
__ B T
Nu, = 26— Cep, VvUox, (43)

where 8 is determined from Eq. (27).
Case 2. Q(x) = VhQ,/vX. Proceeding as in case 1,
we obtain

= const (44)

H To; \Ck, _ /5T, h3/2Q0
”(")=_{6<0>+csps}E\/ x T Tye o 49

. 20, K7 Q, (lpf )

 Ck YW e, (46)
Thus, in this case,
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Problem 2. We now consider the analogous prob-
lem in which we neglect convective heat transport in
the porous body and take the longitudinal heat conduc-
tion into account. Thus, we must solve the system of
equations (1)—(15), replacing Eq. (9) with the equation

T | T

N B | 4
0x*  Oy? (49)

with the additional boundary conditions

T=0, x=0, (50)
or
— =0. :
E (51)

X~ 00

The solution of Eq. (49), satisfying conditions (15),
(50), and (51), has the form [7]

@

1 GAx) 4y N g
T X, = In 21272 I p)(; .
& 9) 9 j\ n (x—x) + o PO () dx (52)

0

Thus, from (11) and (12) we obtain

i |
() = ——j In ’iﬂlpﬂww dy, (53)
n Xy
where 0
oT 1 v
PR =—=1 =——p{x)+ =, (54)
A Yy—o k, Vv'x
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and p(x) is determined from (11) and (12) and

, C p;sl
Y =—2_EE:‘/VUW (55)
Function p(x) is again determined in terms of ®
using Eq. (21). Thus, the solution of the problem re~

duces to the joint solution of two singular integral
equations, (53) and (21), with account for (54).

Taking the Mellin transform of functions (53), (54),
and (21), we obtain

1)
@(S):P__%illtg(%s), —1<ReS< 1, (56)

1

— 57
W@=im@+v52wi”ﬂ .
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and

4 4 ’
rl3—5)
0<<ReS<1/4, (68) -

where, to obtain the Mellin transform, the second
term on the right-hand side of (54) was written in the
form

¥ e Y
— =€ E/x'—,_— (59)
Vi e0 Vx

and B' in (58) is expressed as
] 172
B = K(C) k01 (f’l_l{f) . (60)
n
Equation (56) can be written as follows:
(1)

8(S— 1)= —g—(fltg—;—(S—'l), 0<ReS<2. (61)

Eliminating p(1}(S) and p(S) from Eqs. (57), (58), and

(61), we obtain the following difference equation in the
Mellin transform of the function ®(x):

Ol —1
i =
(2 §o)r(3)
xt 1+ 43 A 3 X
r(_-—_s)
3 3

X tg——(S—1)+ vy e x
2 £+0

, 1 e
Fj— —Site— (S —
(2 )g2< 1)
S—1

X

(62)

We now find the asymptotic solution of this equation
for large x. In (62) we replace tg (r/2)(S — 1) inthe first
term on the right-hand side by the equivalent expres-
sion using T functions.
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Thus,
@(S_l)=__ﬁ_wx
k2 S—I
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It should be noted that the first term on the right-
hand side of Eq. (63) was obtained for 0 < ReS < 1/4;
the second term is valid for the region 0 < ReS < 2.
However, if as in [8], we set

@(—iS——l):Q(S)iP(S), ReS >0, (64)

where

Q(S) = [ I‘(Q,S)I‘(S-{——g—)x
xr(s+%)r(s+1)r<%s+

A)rtsed)r(rees)3on)-

ReS>0; (65)
<« an
P = 20 el (66)

we can easily show that the inverse Mellin transforma-
tion for Q(S) exists for all x, including x — «, and Q(S)
does not have singularities in the half-plane ReS > 0.
Substituting (64) into (63), we note that, for the sec-
ond term on the right-hand side of the equation, the
contribution of all the other poles —~0 as ¢ —~ 0, and
only the pole S = 1/2 gives —2y. Assumption (66) rela-
tive to J(x) leads to values of the coefficients § = 1,

. a =1/2, and we obtain

2n 4
+ 5 )

s 205
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and from (58)
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where
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and
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The coefficients ap, n > 0 are determined by means of
the recurrence relations
2n 2 B’ 2n 2
Qi — + —ja,_4~= — — —_— — | a,,
( N ) wt k ( 5 T3 )

8
a, =0, n<<0 (71)

and
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Thus, since ©(2) = 0 from Eq. (65), it follows from
(71) that all the gy, with n > 2 vanish and
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Q ( _4_)
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Consequently,

® kSX v
= - —1 —_— -
“="k0 "V T 9(_4_)
3

eyt K0
K(C)G (Re,) 2](‘1(__3_) ’ (78)

Thus, for large values of x, the temperature becomes
constant and the heat flux varies as x~/% the asymp-
totic solution gives a result qualitatively similar to the
result obtained from problem 1 in the absence of sources
in the body. This is because, at large distances, it is
possible to neglect the conductivity of the body in the
direction of flow. The constancy of the temperature as
the injection velocity varies along the plate according
to the law x~1/2 has been noted before, for example, in
[5], where it was concluded that the assumption of such
a law of variation of injection velocity is equivalent to
the assumption that the surface is at constant tempera-
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ture and, hence, that the assumption of constant tem-
perature and variation of injection velocity according
to the law x~1/2 was justified for the solution of the
nonconjugate problem.

NOTATION

u is the fluid velocity in the x-direction; v is the
fluid velocity in the y-direction; vy(x) is the injection
velocity at the surface of the porous body; v is thekin-

ematic coefficient of viscosity; q is the mass of fluid
filtering through a small area of porous surface of
length | and width b per unit time; u is the dynamic
coefficient of viscosity; 6 is the fluid temperature; T
is the temperature of the porous body; k is the thermal
conductivity; p is the density; c is the specific heat;

o = k/pe is the thermal diffusivity; 1is the specific
heat of evaporation. Subscripts: s relates to the porous
body, f to the fluid.
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